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I. INTRODUCTION

The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Pro-

gram has fruitfully completed its fourth year. Under the support of the AHE

members and the joint effort of the research team, new and significant pro-

gresses have been achieved in the year. Following the recommendations by

the Advisory Task Force, the research effort is placed on more practical heli-

copter electromagnetic problems, such as HF antennas, composite materials

and antenna efficiencies. In this annual report, the main topics to be ad-
dressed include

* Composite Materials

• Antenna Technology

The research work on each topic has been driven by the AHE Consortium

members' interests and needs. The remarkable achievements and progresses

in each subject is reported respectively in individual sections of the report.

The remarkable work in the area of Composite Materials includes:

a. Modeling of low conductivity composite materials by using Green's

function approach;

b. Guidelines for composite material modeling by using the Green's func-

tion approach in the NEC code;

c. Development of 3-D volume mesh generator for modeling thick and

volumetric dielectrics by using FD-TD method;

d. Modeling antenna elements mounted on a composite Comanche tail

stabilizer;

e. Antenna pattern control and efficiency estimate for a horn antenna

loaded with composite dielectric materials.

The research in the area of Composite Materials has long been focused

on analytic modeling of composite sheets by using the Green's function ap-

proach. Some simple composite geometries such as the thin plate, wedge,

and square plate grounded monopole have been previously designed to ver-

ify the Green's function approach in composite material modeling. Using



the surface impedanceconcept, the approachshowedencourageagreement
with measurements.Basedon thesepreviouswork, this techniquehasbeen
coupledinto the NEC codeto providean equivalentsurfaceimpedancedistri-
bution, which is subsequentlyusedby the NEC codefor pattern predictions.
To provide a guideline for using the surface impedanceconcept in antenna
modelings, someconclusiveremarksare provided in the report.

In addition to the Green'sfunction modelingtechnique, the FD-TD has
been widely usedin dealing with compositestructures. The direct applica-
tion of the technique or direct useof an FD-TD code solely relies on the
discretization of a complexgeometry. In previous researchperiods, an FD-
TD meshgeneratorhasbeendeveloped;howeverit is basedon surfacemesh
generation which is only applicable t6 objects consistingof conducting sur-
facesand thin dielectrics. The work on FD-TD modeling in this period
has beenextendedby developingthe volume FD-TD meshgenerator. The
automatic 3-D volume meshgeneration allows the modeling of geometries
involving thick and volumetric compositematerials. To demonstratethe 3-D
volumemeshgeneration,the numericalmodelingsof a lossydielectric sphere,
a grounded monopoleon a thick compositesubstrate, and a compositeCo-
manchetail stabilizer are reported.

The recent researchrevealeda significant improvementin bandwidth of a
horn antennaloadedwith compositematerials. It wasfound that the FDTD
method coupledwith the contour path integralsis arobust approachto model
this type of antennas. New results on radiation patterns of a horn loaded
with composite materials have been obtained numerically and experimen-
tally. Sinceantennaefficiencyis a key issuein designof antennasmounted
on helicopter platforms, especiallywhen the antennasare loaded with lossy
compositematerials, the reseat,!l on this subject hasbeenrecommendedby
the AHE Advisory Task Forceat the biannual meeting held at the Boeing
Helicopteron May 19-20, 1993.In this report, the work onantennaefficiency
modeling of a horn antenna loadedwith compositesheetsis also reported.

In the area of Antenna Technology,new and significant progresseshave
been achievedin investigationsof conformal cavity-backedmicrostrip and
ferrite-loadedcavity-backedantennas.The conformalcavity-backedmicrostrip
antennasare used to overcomethe tradeoff betweenbandwidth and scan
volume in an array. The ferrite-loadedcavity-backedantennasare not only
conformal to airplane fuselage, but also tunable in operation frequency. Most

importantly, they have a potential use in UHF or even VHF frequencies.



The scattering and radiation performanceof single elementsof circular
patches backed by circular and rectangular cavities were reported before.
Sincethen, wehavesucceededin verifying someof the theoretical results by
experiments. Also, wehavedevelopednumerical codefor the analysisof the
radiation characteristicsof infinite arraysof probe-fedcircular patcheseach
backedby a circular or rectangular cavity.

In thepast, a two-dimensionalanalytical modelof amagnetically-tuneable
cavity-backedslot antennawasintroduced. In this report, a three-dimensional
analytical modelof a cavity-backedslot antennais provided with specificin-
tent of analyzing the tuning capabilities of such an antenna at VHF and
UHF frequencies. Now, the analytic model has the capability to calculate
the monostatic or bistatic RCS (radar cross section) of the CBS antenna
loadedwith ferrite and dielectric layers. While the theoretical analysiswork
is on-going, some fundamental experiments on these ferrite-loaded cavity
backed antennashave also been conducted. A new feed configuration has
been successfullydesigned. Both magnetostatic volume and surface wave
modescanbe excited strongly with this new configuration. It is the magne-
tostatic volumemode that needsto beexcited in order to haveany potential
of resonatingsuchelementsat UHF or VHF frequencies.





II. COMPOSITE MATERIALS

A. Introduction

The research in the area of Composite Materials has been conducted both ex-

perimentally and numerically. An approximate but efficient Green's function

approach has been previously developed for modeling composite materials.

This approach is focused on:

a. Analytic modeling of composite sheets by using the Green's function

approach

b. Evaluation of their equivalent surface impedances

c. NEC code simulation taking into account of the surface impedance of
the materials

Accordingly, some simple composite geometries, such as the thin plate,

wedge and square plate grounded monopole, have been previously designed to

verify the Green's function approach in composite material modeling. Using

the surface impedance concept, the approach showed encouraging agreement

with measurements. Based on the results of the previous work, this technique

has been coupled into the NEC code to provide an equivalent surface imped-

ance distribution, which is subsequently used by the NEC code for pattern

predictions. To provide a guideline for using the surface impedance concept

in antenna modelings, some conclusive remarks are provided in the report to

help the AHE consortium members in their numerical work.

In addition to the Green's function modeling technique, the FD-TD has

been demonstrated in the previous reports to be a powerful and accurate

technique dealing with composite structures. The theory of FD-TD has been

very well developed. The direct application of the technique or direct use of

an FD-TD code solely relies on the discretization of a complex geometry. For

a complex structure involving composite materials, the FD-TD mesh gener-

ation is not an easy task. In previous research periods, an FD-TD surface

mesh generator has been developed; however it is based on ray-tracing al-

gorithm which is applicable to objects consisting of conducting surfaces and

thin dielectrics. The work on FD-TD modeling in this period has been up-

graded by developing the volumetric FD-TD mesh generator. The automatic



3-D volumetric meshgenerationallowsthe modelingof geometriesinvolving
thick and volumetric compositematerials. To demonstratethe 3-D volumet-
ric meshgeneration,the numericalmodelingsof a lossydielectric sphereand
a grounded monopoleon a thick compositesubstratehavebeentested. Sub-
sequently,the meshgenerationhasfurther beenappliedto ascaledcomposite
Comanchetail stabilizer on which an antenna is mounted.

The recent researchrevealeda significant improvement in bandwidth of a
horn antennaloadedwith compositematerials. It wasfound that the FDTD
method coupledwith the contour path integralsis a robustapproachto model
this type of antennas. New results on radiation patterns of a horn loaded
with composite materials have been obtained numerically and experimen-
tally. Sinceantenna efficiencyis a key issuein designof antennasmounted
on helicopter platforms, especiallywhen the antennasare loaded with lossy
compositematerials, the researchon this subject hasbeenrecommendedby
the AHE Advisory Task Forceat the biannual meeting held at the Boeing
Helicopteron May 19-20,1993. In this report, the work onantennaefficiency
modeling of a horn antennaloaded with compositesheetsis also reported.

Bo Antenna Patterns of Low Conductivity Compos-

ite Materials

The objective of this work is to develop the parameters and criteria, necessary

for accurately predicting and analyzing the effects of composite materials on

antenna systems, mounted on helicopter platforms. The criteria to be devel-

oped are the mesh size, the wire diameter, and the location of the equivalent

wire grid relative to the actual location of the antenna structure. Prelim-

inary work has been done in this area last year, but further investigation

and verification is required. In our previous reports we presented theory and

measurements of:

a. Antenna and RCS patterns on composite materials of high conductivity

such as graphite epoxy and fiberglass with screens near the surface.

b. Antenna patterns on composite materials of low conductivity including

microwave absorbers.

c. RCS patterns of low conductivity materials.



In the abovecases,the surfaceimpedanceof the composite material is
evaluatedusing a spectral domain Green's functions approachand utilized
to model the structure under investigation as a wire grid. The pattern of
the structure is then computed using the wire grid option of NEC code.
Monopoleantennason compositematerialshavebeenbuilt and tested. Good
agreementbetweenpredictions and measurementsof radiation patterns of
theseantennashave beenobserved. The RCS patterns of structures made
of compositematerials were alsopredicted and are in good agreementwith
measurements.

In this report, the analysiscriteria, developedand presentedin our 1992
annualprogressreport, are testedand verifiedfor the towel bar antenna. The
towel bar antenna is used quite often in modern helicopter platforms and
has certain advantagesin compositematerial structures. This report shows
that the radiation efficiency of towel bar antenna may not be reducedby
implementingcompositematerials in the helicopter structure. The difference
in absolute valuesof the measuredpatterns for the radiated fields is only
about 1 dB.

1. Theory

It has been shown in our previous reports that the surface impedance Zs of

a two-layer media including a layer of composite material, can be written as

_ _-1

G, = TLJZLT

where ZT, ]_T, fiE, :_.I are the transmission matrices of the composite ma-

terial and the subscript L denotes the medium below the composite material.

At the limit when the thickness d of the bottom layer equal zero, the surface

impedance becomes

},=ZTTj (2)

If the structure under investigation is to be modeled using the two-

impedance sheet method, as discussed in our previous progress reports, the

contributions of the ground plane are duplicated. The surface impedance in
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(1) assumesa ground plane at the backof the compositematerial. In addi-
tion, a PEC sheetis introduced again in the two-sheet wire grid model. This

is most likely to increase the predicted RCS and antenna patterns of compos-

ite materials. To solve this problem, the free space ground plane admittance

is subtracted from the above surface admittance as

Zs = o- r,)-' (3)

where Y, is the free space admittance (can be found using (2)) and Z, is

the modified surface impedance to avoid the inclusion of the ground plane

twice.

2. Measurements and Predictions of Towel bar Antenna Patterns

on Composite Materials

To show the effects of composite materials on the towel bar antenna patterns,

a bar antenna was measured at 4 GHz and 5 GHz on a 6"x6" ground plane.

The ground plane was partially covered with a 6"x3" microwave absorber

(Figure 1). The thickness of the absorber was 40.0 mil (about 1.0 mm).

The length and the height of the antenna were 3" and 0.3", respectively. As

shown in Figures 2 and 3, the measured patterns of the towel bar antenna

on composite materials were slightly different from the pattern of the same

antenna on PEC (the composite material is removed). Thus, the radiation

efficiency is not significantly sacrificed due to the composite material. In

fact, at 4 GHz, the measured gain of the antenna increased by adding the

composite material. This can be explained by the fact that, the image of the

towel bar antenna counteracts the antenna element itself. This usually occurs

when the antenna current is parallel to the ground plane. The composite

material in this case weakens the effects of the image resulting in the observed

improvement in the radiation pattern. This is in contrast with other types

of antennas, such as the monopole antenna, where the image co-acts with

the antenna. This occurs when the antenna current is perpendicular to the

ground plane. In this case, the reduction in the radiation efficiency due to

composite materials can be significant. As presented in our 1992 annual

progress report, the effect of the composite material on monopole antennas

is to reduce the overall pattern by as much as 10 dB.

We measured the material properties between 8.2-12.4 GHz using the
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waveguidetechnique. The measuredpropertieswerethen interpolated to er
=14.9-j0.1, #r =2.0-jl.6 at 5 GH. The structure was modeled as two wire
grids with upper grid loaded with the computed surface impedanceof the
composite material (6+j38 ohms). The ratio of the meshsizeof the upper
grid (the composite material surface) to the wire radius was about 7. In
the computation, only one value of the surface impedance, calculated at
a radiation angle of 450 , wasused. Initially, we had numerical problems
in running the NEC code to model the abovestructure. Thesenumerical
problemswereattributed to the presenceof anexcitation nearby the edgeof
the compositematerial. The edgesingularity interferedwith the calculations
and resulted in a negative value of the input impedanceof the antenna.
This problem wassolvedby connectingthe edgesto the ground plane. The
computedversusmeasuredradiation patterns at 5 GHz areshownin Figures
4 and 5. The measuredand computedpatterns of the antennaon a PEC are
also displayedin Figures 4 and 5 . Reasonably,good agreementis observed
betweentheory and measurements,exceptat the backof the antennawhere
the discrepancywasabout 4 dB. This is expectedsince the feedcablesand
circuits arenot included in the model.

3. Conclusion

The effects of low conductivity composite materials on the towel bar antenna

patterns is analyzed and presented. The code has been validated by com-

puting the surface impedance and comparing predicted patterns to measure-

ments of an antenna partially covered with a microwave absorber material.

Small differences in the pattern of the towel bar antenna were observed due to

the inclusion of composite materials in the structure. This suggests that the

towel bar antenna may be an attractive antenna for platforms that employs

composite materials of low conductivity.

C. Guidelines of Green's Function Analysis of Com-

posite Material Structures

As stated previously, the analysis of composite materials mounted on heli-

copter platforms can employ the concept of the equivalent surface impedance.

The surface impedance of the composite material is evaluated using a spec-

tral domain Green's function approach and is utilized to model the composite
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material structure as a wire grid. The electromagneticcharacteristicsof the
structure are then computed using the wire-grid option of the NEC code.
The parametersand criteria for usingthe wire grid model are:

Wire radius; for PEC the wire radius can bechosenwith a great deal
of flexibility and is usually equal 0.01A. For compositematerials, the
radius should equal the thicknessof the composite material for best
agreementwith measurements.If there is a ground plane at the back
of the compositematerial, the radius is chosenslightly less than the
thicknessof the compositematerial to avoidcontact betweenthe wire
grid representingthe compositematerial and the wire grid representing
the ground plane.

Mesh size; the standard meshsize is 0.1Ax 0.1Afor PEC. The mesh
size for composite materials has to be chosensuch that the surface
areaof the wire equalapproximately the surfaceareaof the composite
material. A typical ratio betweenthe sizeand the radius of the wire is
7. Sincethe radius equalapproximately the thickness,the meshsizeis
about 7 times the thickness.As the thicknessof the compositematerial
gets smaller comparedto wavelength,a finer wire and smaller meshis
required to model the compositematerial.

As reported in the abovesection,work hasbeendoneto verify the above
criteria The predicted RCSpatterns of structuresmadeof compositemateri-
alswerein goodagreementwith measurements.Also, monopoleantennason
low conductivity compositematerials havebeenbuilt and tested with good
agreementbetweenpredictions and measurementsof radiation patterns of
theseantennas.

The radiation efficiencyof a towel bar antenna may not be reducedby
implementingcompositematerials in the helicopter structure. The difference
in the measuredpatterns valuesfor the radiated fields is only about 2 dB.
Our prediction for this type of antennashowssomediscrepancydue to the
interferenceof edgesingularities and the calculations of the antenna input
impedance. Without someprecautions,the edgesingularity mayevenresult
in a negative input impedancein which casethe NEC code terminates the
calculations prematurely. We detectedthis problem with an all PEC towel
bar antenna. This leadsto the conclusionthat this problem is inherent with



the NEC code itself. In a personaldiscussionwith Dr. Granzella from ESL,
a subsidiary of TRW, he confirmedthe sameproblem with the NEC code.

The above problem can be due to numerical inaccuracyor lack of the
appropriate boundary conditions. To insure that this problem is not due to
the latter, the NEC code wasutilized to plot the current distribution of a
A/2 × A/2 sheetof compositematerial due to a plane waveincident at an
angle 0 = 45 degrees, as shown in Figure 6. The material has a surface

impedance of 5+j5 ohms. Figures 7 and 8 shows the current distribution

on the sheet. The current behavior shows that the NEC code predicts the

appropriate current edge conditions; the perpendicular currents vanish at the

edges and the parallel currents increase near the edge.

In conclusion, we found that the Green's function approach provides good

results in all cases that we tested except when an edge singularity is close

to the excitation of the antenna. The combination of the Green's function

surface impedance software/NEC code can handle a wide variety of scattering

and antenna structures, including composite material with or without a metal

backing.

Do FD-TD Modeling of Volumetric Composite Ma-
terials

The FD-TD method has been demonstrated to be a powerful and accu-

rate technique in dealing with composite structures. However, the direct

application of the technique or direct use of an FD-TD code relies on the dis-

cretization of a given complex geometry. When the geometry consists of only

perfectly conducting surfaces, an FD-TD surface mesh generation algorithm

can be used, because the FD-TD method only wants to know the cell indices

on the conducting surfaces where the boundary conditions are enforced. Con-

sequently, an efficient ray-tracing surface mesh generation program has been

previously developed and integrated with the GEOM program. However,

in dealing with objects consisting of both conductors and dielectrics, a 3-

D volumetric mesh generation is inevitable. Recently we developed a 3-D

volumetric FD-TD mesh generator. The automatic 3-D volumetric mesh

generation allows the modeling of geometries involving thick and volumetric

composite materials. The algorithm used for 3-D volumetric mesh gener-

ation is based on the previous surface mesh generation algorithm plus the
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algorithm of reconstructing the volumetric meshfrom boundary (or surface)
elements. So far, the new 3-D volumetric meshgeneration algorithm has
not only been tested by modeling a lossydielectric sphereand a monopole
antennagroundedwith both conducting and thick compositesubstrate, but
alsobeenappliedto modelrealistic complexgeometriessuchasthe composite
Comanchetail stabilizer.

As shown in Figure 9, a dielectric spherewas tested. The spherehas
been usedas a demonstration simply becauseof the availability of analytic
solutions. The spherehasa radiusof onehalf wavelengthand its permittivity
is e, = 2.0, conductivity a = O.O01S/m, and permeability _t_ = 1.0. The

sphere is illuminated by a 300 MHz plane wave incident traveling in the

negative z-direction and polarized toward the x-direction. A FD-TD lattice

is automatically generated by the 3-D volumetric mesh generator with 30

cells per wavelength. The radar cross sections of the sphere in the planes

of ¢ = 90 o and ¢ = 0° are plotted in Figures 10 and 1t. The FD-TD

predictions have been compared with the exact solutions of Mie Theory. It

is seen that the FDTD results agree with the Mie Theory quite well except

in the backscattered directions. This discrepancy is due to the error of the

stair-case modeling of smooth spherical surfaces.

The second example tested was a monopole antenna mounded on a ground

plane. But the ground plane is placed on a very thick composite substrate.

The geometry of problem is shown in Figure 12 where the ground plate is 2A

by 2A and the composite material is one A thick. The electric parameters of

the composite material are the same as those used in the first example. The

antenna radiation patterns in three principal planes are plotted in Figures 13

- 15. Significant backlobes, due to the contribution of the material substrate,

can be seen in the patterns.

The third example is a scaled Comanche tail stabilizer. The original

geometry of the stabilizer is shown in Figure 16, and its solid surface model

is shown in Figure 17 where only a monopole antenna operating at 2 GHz

is analyzed. The discretized FD-TD volumetric mesh of the stabilizer is

shown in Figure 18. The computation domain is about 86x206x48 cells. The

mesh generation for such a computation domain is less than 1 minute on

the IBM RS/6000 350 machine. Three configurations have been analyzed

which include 1) the all-metallic stabilizer; 2) the composite stabilizer (e, =

3.0 - jl.0 -s) with a metal ground strip of 7.5" wide; and 3) the composite

stabilizer (e, = 3.0 - jl.0 -s) with a metal ground strip of 2.5"wide. Their
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radiation power patterns in the pitch, roll, and yaw planesare comparedand
shownrespectively in Figures 19-21. It is seenthat in the yaw plane (XY
plane), the radiation efficiencyof an antennaon the compositestabilizer is
much lower than that of the antennaon an all-metallic stabilizer. Obviously
the dielectric losscontributes significantly to this deficiency. Severalnear
field distribution patterns havebeenprovided in Figures22-25. Figures 22
and 23 showsthe y- and z-componentsof electric fields inside the composite
stabilizer (with 7.5" metal strip), while Figures24and 25showsx-component
of electric field and x-componentof magnetic field on the surfaceof metal
strip. The y-component of the surfacecurrent on the strip is the sameas
the x-componentof magnetic field, and it is seento decayrapidly along the
strip.

From theseexamples,it is seenthat the FD-TD method plus the 3-D
volumetric mesh generatorwill facilitate the modeling of volumetric com-
posite materials by using the FD-TD technique. This approach is fairly
accurateand versatile,and it can be appliedto compositeplatforms suchas
helicopters.

E. FDTD Modeling of Pyramidal Horns With Com-

posite E-plane Walls

The Contour-Path Finite-Difference Time-Domain (CPFDTD) method is

getting more widespread attention since its introduction to the electromag-

netics community [1], [2]. The CPFDTD method is suitable for modeling

structures that cannot be gridized using the standard Yee's rectangular or

cubic grid. The method modifies the grid near the surface of the curved

structure only and retains its basic cubic grid in the remaining computa-

tional domain. The magnetic field components in the distorted grid are

updated through modified equations that assume no field variation within

the distorted area. The second-order accurate central difference approxima-

tions are, therefore, reduced to first-order approximations only at the grid

points near the structure surface and retain their second-order accuracy else-

where in the domain. Distorting the electric field contours is avoided by the

method. The electric field points where necessary are obtained through a

"near neighbor" approximation, i.e., if a field value is not available, the value

of the field component closest to the component that is required is taken.
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The CPFDTD approachpresentsan efficient and still accurateapproachto
extend the application of the conventionalFDTD method to modelsmoothly
curved surfaces.

1. Analysis of Pyramidal Horn Antennas

The application of the staircase FDTD method to model pyramidal horn

antennas was reported in [3]. It was found that to obtain acceptable radiation

patterns, compared to measured ones, grid sizes on the order of 30 cells per

wavelength were required. It is demonstrated here that using the CPFDTD

method with 12 cells per wavelength yields accurate antenna gain patterns.

For this application, seventh-order accurate absorbing boundary conditions

[4] were used.

The flared parts of the antenna surface are modeled by distorting the

contours that update the magnetic field components next to the antenna

surface. Distorting the electric field contours is avoided. In the E-plane

direction the contours for the x and z components of the magnetic field are

distorted to conform to the antenna surface. In the H-plane direction, the

contours for the y and z components of the magnetic field are distorted.

Furthermore, modifications were made in the basic CPFDTD approach

to include the effect of electrically thin (less than the size of the FDTD cell)

magnetic coatings. When magnetic materials are applied in the E-plane walls

of the pyramidal horn, diffractions from the antenna edges are reduced. This

results in reduced side lobe levels in the backside of the antenna. Depending

on the extent to which the E-plane wall is coated, nearly symmetric E-plane

and H-plane antenna patterns can be obtained.

2. Numerical Results

Some of the computed antenna patterns that were obtained from a 5" x 5"

square aperture pyramidal horn antenna and compare them with measure-

ments. The geometry of the horn is shown in Fig. 26. The frequency of

operation was 10 GHz. The aperture of the antenna was 5" × 5", whereas

the waveguide aperture was of standard X-band dimensions, i.e., 0.9" x 0.4".

The transition length from the waveguide aperture to the antenna aperture

was 10.5". A section of 3" long composite material was then glued on the

upper and lower E-plane walls as shown in Figure 26. The electrical param-
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etersof the composite material were measured to be er = 15.95 - j0.45 and

#_ = 1.58 -j1.18 and its thickness was 40 mils.

The grid size was 0.1"(about 12 cells per wavelength), i.e., the waveguide

was 9x4 cells whereas the antenna aperture was 50x50 cells. The distance

from the waveguide transition to the antenna aperture was 105 cells. Be-

tween the antenna and the outer boundary 14 cells were allowed. The overall

grid size was 78x78x144 cells. The CPFDTD program was run for 40 cycles

to reach steady state, on a RISC/6000. The CPU time was 4,200 seconds for

obtaining the E-and H-plane gain patterns over 360 ° (at 1° steps). Figure

27 exhibits the computed E-plane gain pattern of the antenna without the

presence of composite material and compares it with measurements. The

agreement between the CPFDTD results and measurements is very good.

Figure 28 compares the computed gain pattern in the H-plane with measure-

ments.

Figure 29 compares the E-plane pattern of the same antenna with mea-

surements when the lossy coating in the E-plane wall is applied. With the

application of composite material the maximum gain at broadside is reduced

by 1.6 dB, but the first side lobe in the pattern is eliminated. The side lobes

in the backside of the antenna are also much lower with the composite wall.

F. Efficiencies of Horn Antennas Loaded with Com-

posite Materials

The antenna patterns of a horn loaded with composite materials can be

predicted by using the FD-TD method. In addition, the analysis of antenna

efficiency can also be performed by using the same FD-TD technique. The

approach to calculate the horn input power, E- and H-plane gain patterns,

radiation power and antenna radiation efficiency is outlined and numerical

results are presented.

1. Pyramidal Horn Antenna Input Power, E- and H-plane Gain

Patterns, Radiated Power and Radiation Efficiency

The geometry of a partially coated pyramidal horn is already shown in

Fig. 26. A section of composite material of thickness t and length l_ is

placed on the upper and lower E-plane walls of the horn for pattern control
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purposes. The effect of the lossy material on the antenna performance is

analyzed in this section.

The pyramidal horn was fed by a rectangular waveguide operating in

the dominant TElo mode whose tangential electric field at the aperture is

represented by

Ey(x, y, z) = Eo sin( aX) Sin(wt - 3zZ) (4)

where 0 g x _< a and 0 < y < b. The constant 3z represents the waveguide

propagation constant. At the reference feed plane, 3zz was set to zero.

Using this feed scheme, the input power to the horn was estimated by

integrating the input power density over the waveguide cross section, and it

is given by

0 = _Ei _ (5)

The radiated far-zone Ee and E¢ electric fields are obtained from the

FDTD code through a near-to-far field transformation. The E-plane gain

pattern was calculated using

GE (O, ¢ = 90 °) = 47rE_ (0, ¢ = 90 °)p,._, (6)
0

Similarly, the H-plane gain pattern was calculated using

GH (0, ¢ = 0 °) = 47rE_ (0, ¢ = 0°)
pl_,,v,,, (7)

0

The antenna radiated power was estimated by integrating the far-zone

fields over a sphere, and it is represented by:

p_d= fo '_ fo2_U($,¢)sinOdOd¢ (8)

where U(O, ¢) is the radiation intensity and is given by

1 I 12
U(O, 0) = _-_0[ Eo(O, ¢) + I E_(O, ¢) 12] (9)

where r/o = 1207r is the free-space impedance. One important design parame-

ter of pyramidal horns with lossy materials on the E-plane walls is the power

loss or the antenna efficiency calculated using

prad

7/- p_.p.t (10)
" 10
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2. Numerical Results

A 20-dB standard gain pyramidal horn antenna with conducting inner walls

was analyzed using the contour path FDTD method. Figs. 30 and 31 compare

the computed E- and H-plane gain patterns, respectively, of the pyramidal

horn with measurements. As illustrated by both figures, there is very good

agreement between the computed and measured results over a dynamic range
of 60 dB. The computed gain patterns agree very well with the measured ones

when a standard cell size of )_/12 was used (0.1"). The overall FDTD grid

required for this problem was 76 × 60 × 142 cells. This simulation was run

for 40 cycles to reach steady state and took about 2,500 seconds on an IBM-

RISC/6000 computer for computing the E- and H-plane gain patterns over
360 ° at 1° steps.

The antenna radiation efficiency for the pyramidal horn with conducting
walls was estimated by integrating the far-zone fields to obtain the radiated

power. The amplitude of the y-directed electric field was set equal to Eo = 1
V/m producing a reference input power of pi,_p,,t" 10 = 0.116226 × 10 -6 Watts.

By evaluating the far fields and then integrating them (1 ° step), the radiated

power was estimated to be prad = 0.115077 × 10 -6 watts. The corresponding

antenna radiation efficiency was 77= 0.99011 __ 99%. Therefore, most of the

input power is radiated except for a small portion which is reflected back
into the antenna.

For pattern control purposes, sections of ECCOSORB GDS composite

material, with measured electrical parameters e_ = 14.9 -j0.25 and /.t_ =

1.55 - jl.45 at 10 GHz, were placed on the inner E-plane walls of the horn

as illustrated in Fig. 26. The nominal thickness of the composite material

section was t = 30 mil (0.0762cm). The material thickness, however, was

measured to be t = 33 mil (0.08382cm).

For the FDTD simulations a grid size of 0.1" was used. The material

thickness was about a third of the FDTD cell. The composite material

sections influence mainly the E-plane pattern. Thus, only results from the

E-plane gain pattern calculation of the coated 20-dB standard gain horn are

presented. Fig. 32 compares the FDTD computed results with measurements,

when a 2" section of composite material was used. The agreement between

the computed and measured results is good. As illustrated in the figure,

the first side lobe of the pattern is eliminated. Because of the presence

of the material in the inner walls, the broadside antenna gain was reduced
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by 2.69 dB. In this casethe antenna radiated power was estimated to be
prad = 0.0886980 × 10 -6 watts, resulting in an antenna efficiency of r/ =

0.7631493 _ 76.3%. The reduced antenna efficiency in this case is due to the

power dissipated in the 2" section of lossy magnetic material.

Fig. 33 compares the computed and measured E-plane patterns when a

section of 4" GDS material is used for coating the E-plane walls of the 20-dB

standard gain horn. As illustrated in the figure, good agreement between the

computed and measured gain patterns is obtained in this case also. With

4" of GDS material the second side lobe in the pattern is almost eliminated.

However in this case, the broadside gain is reduced by 4.98 dB. The radiation

efficiency was reduced to r/ = 0.63870 -_ 63.9%. In this case a significant

amount of power is dissipated in the lossy magnetic material.

Fig. 34 compares the FDTD computed gain pattern with measurements

when a section of 66 mil thick and 2" long GDS material is used for coating

the E-plane walls of the 20-dB standard gain pyramidal horn. In this case

two sections of 33 mil GDS material were glued together to form a 66 mil

section. As illustrated in the figure, good agreement between the computed

and measured gain patterns is obtained in the main lobe. There are, however,

some differences between the computed and measured results in the side lobes

of the pattern. With the 66 mil section of GDS material the broadside gain

of the pattern is reduced by 2.64 dB. The antenna radiation efficiency in this

case was estimated to be r/= 0.70004 _- 70.0%.

The FDTD results of the broadside gain and efficiency calculations for

the different antenna geometries are summarized in Table 1.

Table 1: Broadside gain and radiation efficiency of a 20-dB standard gain

horn at 10 GHz, partially coated with composite material.

Antenna type GE(O = 0 °, ¢ = 90 °) dB

20.65

Efficiency, 7/

0.99011Conducting walls

GDS material, l,_ = 2", t = 33 mil 17.96 0.76315

GDS material, lm = 4", t = 33 mil 15.67 0.63870

GDS material, lm = 2", t = 66 mil 18.01 0.70004

To examine the effect of material thickness and length on the antenna

radiation pattern, the broadside gain loss of the 20-dB standard gain horn was
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calculated for different GDS material thicknessand lengths. The variation
of the broadsideantenna gain lossversus the GDS material thickness, for
different material lengths, is illustrated in Fig. 35. As illustrated in the
figure the broadsideantennagain lossis largest for thicknessin the rangeof
25 - 30mil, and decreasesfor largermaterial thickness.Thus thicknessrange
is not strongly influencedby the material length.

G. Future Work

Future work in this area will be directed toward modeling of complex struc-

tures by using FDTD technique plus the auto-mesh generation capability.

Since FD-TD technique can model different materials in the computation

domain in a unified way, it will be the primary vehicle to be used for solv-

ing complex composite geometries. In the meanwhile, the surface impedance

approach will be coupled with other EM codes (NEC, ESP and FERM) to

model thin dielectric and coated metallic geometries.

To facilitate composite material modeling, the two approaches (FD-TD

and surface impedance) will be integrated into the GEOM code. Thus the

GEOM can be used as a preprocessor to provide appropriate grids or meshes

for a given complex geometry.
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Figure 2: Measured yz-plane plane pattern of the towel bar antenna on

composite materials at 4 GHz
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Figure 3: Measured yz-plane plane pattern of the towel bar antenna on

composite materials at 5 GHz
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Figure 4: Predicted and measured radiation pattern of the towel-bar antenna

in yz plane ( the plane perpendicular to both the towel-bar plane and the

ground plane).
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Figure 5: Predicted and measured radiation pattern of the towel-bar antenna

in xy plane ( the ground plane).

23



Z

Y

Incidentwave :!:!:!:i:!_!!:!:!:!:!:!:!:!:i:!:i:!:

x
Composite material

Figure 6: The geometry used to compute current distribution on a _/2 x )_/2

composite plate.

24



m

¢-

8.00e-S

6.00e-S

¢.-- 4.00e-5

L-

'L_

(D 2.00e-5

• I _ 1 • I " I '

• 0.15 -0.05 0.05 0,15 0.25

Y

x=O.OS(h)
x=O,15(h)

x=o.25(h)

Figure 7: Current distribution along constant x lines. Hard polarization.

25



e-
C}

1.000e-3

8.000e-4

6.000e-4

(-.
4.000e-4

t._

(,,) 2.000e4

O.O00e,O
-0.25

[ I I I

_E]-----"

, l , I = l = I k

• 0.15 "0,05 0.05 0,15

X

I

y.-O.O5(h)

y:O.15(h)

y:O.25(h)

O. 5

Figure 8: Current distribution along constant y lines. Hard polarization.

26



7

Y

×

Figure 9: The geometry of a dielectric sphere with radius of 0.5X.

27



0

Figure 10: RCSof a dielectric spherein the planeof $ = 90°. (¢r=2.0 - j0.06)
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Figure 13: XZ-plane radiation pattern of a monopole grounded with PEC
and dielectric substrate.
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Figure 14: YZ-plane radiation pattern of a monopole grounded with PEC
and dielectric substrate.
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Figure 15: XY-plane radiation pattern of a monopole grounded with PEC

and dielectric substrate.
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Figure 16: The original geometry of a scaled Comanche tail stalilizer.
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Figure 17: Solid surfacemodel of the scaledComanchestabilizer.
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Figure 18: Volumetric FDTD meshusedto model the Comanchestabilizer.
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Figure 19: XZ-plane power radiation pattern of a monopole mounted on the

stabilizer (solid line - all-metallic stabilizer; dashed line - stabilizer with 7.5"

wide metal strip; dot-dashed line - stabilizer with 2.5" wide metal strip).
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Figure 20: YZ-plane power radiation pattern of a monopole mounted on the

stabilizer (solid line - all-metallic stabilizer; dashed line - stabilizer with 7.5"

wide metal strip; dot-dashed line - stabilizer with 2.5" wide metal strip).
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Figure 21: XY-plane power radiation pattern of a monopole mounted on the

stabilizer (solid line - all-metallic stabilizer; dashed line - stabilizer with 7.5"

wide metal strip; dot-dashed line - stabilizer with 2.5" wide metal strip).
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Ey Field

Figure 22: E_ field distribution inside and around the Comanche stabilizer

(with 7.5" wide metal strip and _ = 3.0 - jl.0-s).
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Ez Field

Figure 23: Ez field distribution inside and around the Comanche stabilizer

(with 7.5" wide metal strip and e_ = 3.0 - jl.0-5).
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Ex Field

Figure 24: E_ field distribution on and around the metal strip of the stabilizer

(with 7.5" wide metal strip and er = 3.0 - jl.0-s).
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I-Ix Field

Figure 25: H_ field distribution on and around the metal strip of the stabilizer

(with 7.5" wide metal strip and e, = 3.0 - jl.0-s).
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Figure 26: Geometry of a pyramidal horn antenna with composite E-plane
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Figure 27: E-plane gain pattern of a square aperture pyramidal horn at 10.0
GHz. The antenna size was A = 5", B = 5", L = 10.5", a = 0.9" and

b = 0.4".
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Figure 28: H-plane gain pattern of a square aperture pyramidal horn at 10.0

GHz. The antenna size was A = 5", B = 5", L = 10.5", a = 0.9" and
b = 0.4".
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Figure 29: E-plane gain pattern of a square aperture pyramidal horn with

composite E-plane walls at 10.0 GHz. The antenna size was A = 5", B = 5",

L = 10.5", a = 0.9" and b = 0.4". The parameters of the composite material

were l,, = 3", t = 0.040", e, = 15.95 - j0.45 and #, = 1.58 - jl.18.
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Figure 30: E-plane gain of a 20-dB standard gain pyramidal horn with con-

ducting walls at 10.0 GHz (A = 4.87", B - 3.62", L = 10.06", a = 0.9" and
b = 0.4").
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Figure 31: H-plane gain of a 20-dB pyramidal standard gain horn with con-

ducting inner walls at 10.0 GHz.
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Figure 32: E-plane gain of a 20-dB standard gain pyramidal horn at 10.0

GHz, partially coated with GDS magnetic material (er = 14.9 -j0.25 and

#_ = 1.55- jl.45, t = 33 rail and lm= 2").
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Figure 33: E-plane gain of a 20-dB standard gain pyramidal horn at 10.0

GHz, partially coated with GDS magnetic material (_, = 14.9 -j0.25 and

tt, = 1.55- jl.45, t = 33 mil and l,,, = 4").
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Figure 34: E-plane gain of a 20-dB standard gain pyramidal horn at 10.0

GHz, partially coated with GDS magnetic material (e_ = 14.9 -j0.25 and

/a, = 1.55 -jl.45, t = 66 mil and l,,, = 2").
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Figure 35: Broadside antenna gain loss of a 20-dB standard gain pyramidal

horn at 10.0 GHz, partially coated with GDS magnetic material (er = 14.9 -

j0.25 and #r = 1.55- jl.45).
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III. ANTENNA TECHNOLOGY

A. Introduction

During this annual period, significant progress in the area of conformal

cavity-backed and ferrite cavity-backed antennas has been achieved.

In the previous reports, the scattering and radiation performance of single

elements of circular patches backed by circular and rectangular cavities were

presented. Since then, we have succeeded in verifying some of the theoretical

results by fabricating and testing a single circular patch antenna backed by

a circular cavity. In addition, we have also developed numerical code for the

analysis of the radiation characteristics of infinite arrays of probe-fed circular

patches each backed by a circular or rectangular cavity.

In this report, the progress on the theory with the three dimensional

analytic model of the CBS antenna is also reported. In addition, more cav-

ity experiments have been performed to identify the types of magnetostatic

wave modes excited. Now, the analytic model has the capability to calculate

the monostatic or bistatic RCS (radar cross section) of the CBS antenna

loaded with ferrite and dielectric layers and some theoretical results will be

presented. The experiments have been concentrated on altering the cavity

and feed structure in the hopes that this change would excite a magneto-

static volume wave mode, which resonates at UHF or even VHF. It will be

shown that both magnetostatic volume and surface wave modes were excited

strongly with this new configuration.

B. Cavity-Backed Microstrip Patch Antennas

One way to overcome the tradeoff that exists between bandwidth and scan

volume in a microstrip patch element phased array is to surround each patch

element with a cavity. By doing so, the substrate can no longer support

guided wave modes. Therefore, the substrate thickness can be increased

substantially to improve the bandwidth without a corresponding decrease in
scan coverage.

In this report period, we have succeeded in verifying some of the theoret-

ical results by fabricating and testing a single circular patch antenna backed

by a circular cavity. Fig. 36 shows the cross section of this antenna. The

parameters used for the experimental model are given by:
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I/ RI = 4.55 cm R2 = 5.72cm

e_ = 2.2 (1-j0.0009) _tr = 1

a = 4.55 cm c = 0.2286 cm

xp = 1.18 cm yp = 0 r0 = 0.045 cm

The antenna was tested by measuring the S11 parameter, using an HP8510

network analyzer. Fig. 37 illustrates the experimental and theoretical in-

put impedance results on a Smith chart. As can be seen, the results agree

well. Fig. 38 shows the theoretical and experimental return loss. The slight

variation in the resonant frequency between the theory and experiment is

primarily due to the tolerance of the dielectric constant of the substrate, and

the machining of the cavity.

In this report period, we have also developed numerical code for the

analysis of the radiation characteristics of infinite arrays of probe-fed circular

patches each backed by a circular or rectangular cavity. The geometry of an

infinite array of circular patches backed by circular cavities is shown in Fig.

39.

Results of the computer codes for the two different antenna geometries are

compared to those of an infinite array of conventional patches. The param-
eters of interest are the broadside-matched active reflection coefficient, and

the active resistance of an array elements. The broadside-matched reflection

coefficient is determined by matching the antenna elements at broadside (0

= 0, ¢ = 0), and calculating the antenna reflection coefficient as a function

of scan angle (Fig. 40). This can be used to determine the scanning range of

the array as a function of substrate thickness. Furthermore, by calculating

the active resistance of the antenna as a function of frequency for varying

substrate thickness, we can gain insight into the bandwidth performance of

the antenna.

We can begin by first considering a thin substrate. The parameters for

Case A for the circular cavity-backed array are given by:
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R1 = 0.178 A0 R2 = 0.222 A0

er =2.5 /tr = 1

a=0.27065A0 c=0.02A0

xp = 0.089 A0 y_ = 0 r0 = 0.004 Ao

d_ = 0.5 A0 d_ = 0.5 )_0

Fig. 41 illustrates the E-plane (¢=0) broadside-matched active reflection

coefficient of this antenna along with an equivalent array of circular patches

backed by rectangular cavities and an array of conventional circular patches.

The figure shows that for thin substrates the scan performance of conven-

tional and cavity-backed patches are similar. However, there exists a peak

in the reflection coefficient of the conventional array near grazing angle that

does not appear in the cavity-backed patches. This peak corresponds to the

excitation of leaky wave modes in the substrate of a conventional array that

has been effectively eliminated in the cavity-backed patch geometries.

Fig. 42 illustrates the H-plane (¢=90) broadside-matched active reflection

coefficient of the three antennas for Case A. This result is also similar for the
three arrays.

Next, we increase the substrate thickness and look at the results for the

three arrays. The parameters chosen for Case B are given by:

R1 = 0.164 A0 R2 = 0.205 Ao

er = 2.5 _ = 1

a=0.27065 A0 c=0.05Ao

xp = 0.082 )_0 yp = 0 r0 = 0.004 Ao

d_ = 0.5 )_0 dy = 0.5 )_0

Fig. 43 illustrates the E-plane reflection coefficient for Case B. The re-

sults indicate that the cavity-backed patch arrays show improvement in scan

performance over the conventional patch array for the thicker substrate. Fig.

44 illustrates the H-plane reflection coefficient for Case B. The cavity-backed

patch arrays also show enhanced performance in the H-plane, but not as

dramatic as the E-plane. Furthermore, the leaky wave resonance in the con-

ventional patch array has shifted closer to broadside that is an undesirable
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effect of a thicker substrate. Finally, increasing the substrate thickness even

more, we use parameters of Case C given by:

R1 = 0.156 )to R2 = 0.195 A0

er = 2.5 g_ = 1

a = 0.27065 )_0 c = 0.08 )to

xv = 0.078 )to yp = 0 r0 = 0.004 )to

d_ = 0.5 )to d_ = 0.5 A0

Fig. 45 illustrates the E-plane reflection coefficient of the three arrays for

Case C. The results show that the cavity-backed patch arrays demonstrate

substantial improvement in their scan performance over the conventional

patch array. Fig. 46 illustrates the H-plane reflection coefficient results.

This also indicates that the cavity-backed patch arrays have an enhanced scan

volume. Fig. 47 illustrates the E-plane reflection coefficient of the circular

cavity-backed patch array as a function of substrate thickness. This clearly

demonstrates the advantage of using a thicker substrate in obtaining better

scan performance. In addition to scan volume enhancement, the cavity-

backed patches also exhibit improvement in bandwidth. Fig. 48 illustrates

the active resistance of the circular cavity-backed patch array as a function

of substrate thickness. As can be seen, as the substrate thickness is increased

the bandwidth of the array also increases.

The overall results of the cavity-backed patch arrays indicate that by

increasing the substrate thickness, both scan volume and bandwidth perfor-

mance of the array can be improved. Furthermore, surface and leaky wave

resonances excited in the substrate of conventional microstrip patch phased

arrays are completely eliminated in the cavity-backed patch arrays. Thus,

the cavity-backed patch arrays show substantial improvement over the con-

ventional patch arrays.

1. Future work for conformal antenna technology

During the next year, research in the area of conformal antenna technology

will emphasize two major areas. These areas are (1) development of confor-

real antennas suitable for use at UHF and possibly lower frequencies, and (2)
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incorporation of the effect of platform geometry and materials on conformal
antenna radiation characteristics.

A. Conformal Antennas for UHF and Lower Frequencies

Microstrip antennas are extremely attractive candidates for aerospace

applications because of their conformability, light weight and low cost. How-

ever, these antennas are rarely used at UHF and lower frequencies because

of excessive size. Although the size of the antenna can be reduced by using a

high dielectric constant substrate, the effects of surface waves supported by

such substrates severely degrades the antenna performance. Past research

on conformal antennas in this program has emphasized the development of

cavity-backed microstrip antennas. This configuration is of great interest be-

cause the deleterious effects of surface waves are eliminated by the presence of

the cavity. We propose to investigate the use of cavity-backed patch antennas

such as that shown in Figure 49 at UHF and possibly lower frequencies.

B. Effect of Platform Geometry and Materials on Conformal An-

tenna Radiation Characteristics

Past research on conformal antennas in this program has emphasized the

development of novel microstrip antenna concepts which overcome certain in-

trinsic disadvantages of microstrip antennas such as narrow bandwidth and

the tradeoff between scan volume and bandwidth in large arrays without sig-

nificantly comprising the attractive features that make microstrip antennas

so desirable. It is now appropriate to begin to investigate the effect of plat-
form geometry and materials on the antenna radiation characteristics. To

this end the following tasks will be undertaken:

a. Extension of the hybrid FEM/spectral-domain MoM technique to three
dimensions and to coated conductors.

b. Investigation of hybrid MoM/PO techniques for antenna radiation on
complex platforms.
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C. Ferrite Tuned Cavity Backed Slot Radiators

The cavity backed slot (CBS) antenna is a lightweight, conformal radiator,

and considered efficient due to its electrical size and material loading within

the cavity. Having these characteristics, the CBS antenna is an ideal choice

for experimentation as a tunable antenna. As stated in previous reports, the

concept of using a ferrite to magnetically tune a CBS antenna is not new [5].

The literature, however, lacks any substantial work to verify the capability

of such an antenna [5], [6] and [7].

In the last report, the progress and some theory with the three dimen-

sional analytic model of the CBS antenna was reported. Also, more cavity ex-

periments were performed to identify the types of magnetostatic wave modes

excited; however, only surface wave modes were excited. For completeness of

this section, the properties of ferrites will be reviewed. After that, some of

the verifications used to check the validity (correctness and accuracy) of the

solution will be discussed. Then, some theoretical results of the RCS of the

CBS antenna will be shown. The power handling capabilities of the ferrite

layer will also be analyzed. The last portion of the section will summarize

the analytical portion of this section.

1. Background

Ferrite substrates are ferromagnetic, or superparamagnetic, materials con-

structed from solid ceramic materials which have been sintered with certain

metal oxides at high temperatures. At microwave frequencies they exhibit

strong magnetic effects, which result in anisotropic behavior. By applying an

external DC magnetic field, the permeability tensor of the ferrite is altered.

This change occurs due to the interaction of the internal magnetic moment of

the ferrite and the magnetic field of the material. The interaction effectively

alters the electrical characteristics of the material used in the CBS structure.

Consequently, the antenna will resonate at a different frequency for different

values of the applied DC magnetic field.

There are two types of modes that can be excited inside the cavity. The

first type of modes considered is the dynamic mode, which strongly depends

on the the size of the cavity and the electrical properties of the materials

inside the cavity. This mode is somewhat independent of the magnetic bias

of the ferrite as shown in previous reports. This has been the traditional mode
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type excited within the CBS antenna. The secondtype of modesconsidered
is the magnetostaticmode. This modealsodependson theexternal magnetic
bias field. For this type of modes,the biasedferrite material givesrise to low
frequencymagnetostaticvolumewavemodeswhich becomeappreciablewith
large external bias fields. The volume wave modestravel in the direction
of the bias field. Furthermore,magnetostaticsurfacewavemodescan exist.
Their cutoff frequency is higher than a volume wave mode and these modes

travel perpendicular to the direction of the bias field. It is these volume

wave modes that will allow the a microwave CBS antenna to operate in a

frequency range much lower than those of the dynamic modes.

2. Theoretical Analysis and Validation

The purpose of this section is to document the work on the rigorous modeling

of the CBS antenna filled with dielectric and ferrite layers. The CBS antenna

is depicted in Figure 50. Previously, the methodology taken to solve this

problem and the progress of the code was discussed. Since the last report,

the echo area of a rectangular CBS filled with any combination of ferrite and

dielectric layers can be analyzed.

Numerical solutions of real world problems are often treated as boundary

value problems. These mathematical descriptions cannot always be per-

formed in 'closed form.' The mathematical methods of solution can be very

complex and may require intense numerical computation. When reducing

the mathematical formulas to tractable numerical algorithms, some numer-

ical approximations may be employed, e.g. utilizing gaussian quadrature

to perform a numerical integration. Therefore, it is necessary to examine

and verify the software's results to gain confidence in the correctness and

accuracy of the solutions. Of course, checks can only be performed in some

limiting sense, since for a flexible code, the necessity of checking all possible'

cases would be a major undertaking. Also note that no set of comparisons

can be considered as absolute proof that the code works under all possible
conditions.

Rather than show all the checks performed on the software, only two

checks will be shown. The first will be a comparison of two different codes

which can analyze a CBS antenna. The comparison code was written by

Dr. Aberle, a contributor of this program, for another project [8]. The

second comparison will be between an analytic expression and the moment
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method/spectral domain approach(SDA) for the interior admittance.
The first geometryusedfor validation is anannular slot cut in a perfectly

conducting plane. The interior region is a rectangular cavity filled with a
singlehomogeneouslayers of dielectric material. The structure is depicted
in Figure 51. The dimensionscan be seenin Table 2. Both solutions are
obtained using Galerkin's method and SDA [91-[111;however, the Green's
functions are determined differently. The modeschosento expand the fields
in the slot are of the sameform but chosenin a different manner. The two
codeswerewritten independentlyof one another.

Variable

R1

R2

a

b

C

£r

Meaning. [ Physical Dimensions

inner radius of slot

outer radius of slot

cavity width

cavity length

cavity depth

relative permeability

relative permittivity

2.0 cm

2.1 cm

4.2 cm

4.2 cm

0.21844 cm

2.33

1.0

Table 2: Annular CBS Parameters.

The results for the monostatic RCS at a frequency of 5 GHz are shown

in Figure 52. As shown the ¢¢ polarization of the RCS overlay exactly. The

0# polarization of the RCS overlays at normal incident, and diverges slightly,

on the order of 1 dB as the echo area is measured at grazing incidence. This

slight variation is a function of the basis set chosen and in the evaluation of

the exterior admittance elements. Dr. Aberle's code chooses the azimuthal

modal expansion number, the _ variation, to lie between 0 and 2. The code

developed in this program chooses the azimuthal mode number to lie between

0 and 3. Also, Dr. Aberle's code does one numerical integration and one

analytic integration in the exterior admittance calculation since the slot and

exterior region is _ symmetric. The code developed here does two numerical

integrations since the slot shape of interest is the rectangular slot which has

no ¢ symmetry. These differences attribute slightly to discrepancies between

the two calculated results. It is unclear to say which result is a more accurate

prediction; however, both results are correct.
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The secondresult is a comparisonof the internal matrix elementsfor a
dielectric loadedrectangular cavity. If the rectangularslot is the samedimen-
sion as that of the cavity, the interior matrix can be solvedfor analytically.
This closedform solution is analogousto a multimode transmissionline ter-
minated in a short circuit. This is describedin the context of the network
formulation explained in the previousquarterly report. Table 3 depicts the
interior structure to be analyzed and Table 4 lists the matrix elementsas
calculated by the SDA and the transmissionline method. The agreementis
excellent. Note that the real part of all elementsare zero. This occurssince
the materials wereassumedlossless.If the materials werelossy,the real part
would havea positive value.

Variable Meaning Cavity Dimensions

(_

b

C

_r

cavity width

cavity length

cavity depth

relative permeability

relative permittivity

1.7 cm

2.0 cm

0.1 cm

1.0

1.0

Table 3: Rectangular Cavity Parameters.

mode number

1

2

3

4

5

SDA

-1.0631 x i0-I

-1.0665 x i0-I

-1.0751 × 10 -1

1.1686 x 10-3

-1.0890 x I0-'

Analytic

-1.0631 x i0-I

-1.0665 x I0-'

-1.0751 × I0-'

1.1686 x 10-3

-1.0890 x 10-1

Table 4: Imaginary part of the Interior Admittance Calculation.
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3. Numerical Results

A single result for the monostatic RCS at normal incidence from a CBS

antenna versus frequency for different values of Ho will be discussed. The

antenna's dimensions can be found in Table 5 and the results can be seen

in Figure 53. The structure is very similar to the cavity examined in the

measurement portion of this section of the report. The frequency was varied

between 400 MHz and 2 GHz. Two differently-directed DC bias fields are

shown, 11o is 200 and 400 Oersted (Oe). The third plot corresponds to

replacing the ferrite material by a dielectric layer, 4rM, = 0. As shown

in the figure, the 00 polarization of the RCS is much more weakly excited

as compared to the ¢¢ polarization. In addition, the 00 polarization has

little to no variation for different bias strengths. The 00 polarization is the

cross polarization of the slot which does not couple s_ tongly to the cavity

or radiate well. The copolarized field, in this case the ¢¢ polarization, is

more influenced by the magnetization. The ripples in the RCS calculation

correspond to the excitation of magnetostatic modes in the ferrite material.

The first dynamic mode resonance is above 3 GHz. By examining the curve

corresponding to a DC bias of 200 Oe and some fundamental equations for

a ferrite, some insight can be gained into the nature of the magnetostatic

resonances.

The equations governing the cutoff and resonance of magnetostatic back-

ward volume wave and magnetostatic surface wave modes are given by,

fc = 3"_/Ho(Ho + 47rM.) (11)

f_,, = 3'go (12)

and,

f_ = 3"k/Ho(Ho + 4rMs) (13)

f/l,,,,.,, = 3'(Ho + 2rrMs) (14)

f'_,_,,, = 3"(Ho + 4rrMs) (15)

where 3' is the gyromagnetic ratio and the subscripts vwm and swm refer

to volume and surface wave modes, respectively. Also, the superscripts refer

to the free space boundaries (fs) and metallic wall boundaries(mw). Note

that the cutoff frequencies of the two cases are identical and the volume
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wave mode cutoff frequency is greater than its resonance frequency, fr_,,,.

For the case under discussion, fc is 1.25 GHz and fr_,, is 560 MHz. We

can see the first deviation from a smooth curve occurs at approximately

f_,_,, and the magnetostatic volume mode resonances in the RCS of the CBS

antenna occur at approximately 750 MHz and 1.05 GHz. This resonance at

750 MHz is in the UHF range desired. Proper design of the CBS antenna

may even lower this resonance into the VHF range. The next resonance

is seen at approximately 1.65 GHz and is in the surface wave mode range.

The resonance frequency for a surface wave mode for free space boundaries

occurs at 1.68 GHz. Since the ferrite layer is suspended between the top

and bottom walls of the structure, it is neither bounded by metallic walls or

free space. However, due to the proximity of the walls to the ferrite layer, it

is not unreasonable to assume that a strong resonance may occur at f_,,.
In addition, there is another much weaker resonance at 1.75 GHz. This

is another surface wave mode. This configuration is interesting since these

resonances occur at frequencies very close to the resonances seen in the cavity
experiments.

4. Power Handling Capabilities

The equations of motion utilized in describing magnetic material have non-

linear terms. This nonlinearity can provide a mechanism for coupling the

uniform precession of the electrons to spin wave modes at power levels much

less than that required for r.f. saturation of the precession. This flood of

energy out of the uniform motion of the electrons prevents the precession

angle from increasing and brings about the early onset of the decline of the

permeability at resonance [12]. Suhl [13] has determined an approximate

form for estimating the threshold of this high power catastrophe. This can

be written in the form,

1 /'AH

hc,,, = -_AHV_ (16)

Therefore, if the structure of the previous section is examined, 41rM and

AH was 800 and 10 Oe, respectively. Solving for he,it in the above equation

yields 0.54 Oe which is equivalent to approximately 280 watts peak power

([12], page 586). Time averaged magnetic stored power can be found from

[14]. Assuming that the field is constant in the material, the time averaged
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powerstored in a given block of material is,

1 n 12P,, = V (17)

Assuming one ferrite layer of Table 5 and an operating frequency of 800 MHz,

the average power is approximately 46 watts.

Of course, the power dissipated due to losses in the material would heat

the ferrite and change the material properties by passing the Nell temper-

ature. The Ne61 temperature of a ferrite is a temperature above which the

thermal energy is sufficient to destroy the magnetic alignment and thus the

material becomes paramagnetic. Therefore, for high power applications, cool-

ing the ferrite becomes a concern.

5. Summary

To date, the echo area of a rectangular CBS antenna filled with any com-

bination of ferrite and dielectric layers can be analyzed. During the next

year, work will continue on the formulation necessary for the analysis of the

strip feed and the gain of the CBS antenna. Only the theory necessary for

the normalization of the power pattern to calculate the directivity needs be

considered. The programming of the feed portion of the CBS antenna will

begin.

D. Cavity Backed Slot Experiments

Since the last report period, the experiments have been concentrated on

altering the cavity and feed structure in the hopes that this change would

excite a magnetostatic volume wave mode. Both magnetostatic volume and

surface wave modes were excited strongly with this new configuration. The

results of these measurements will be discussed in this section.

Previously, a cavity backed slot antenna was built employing low loss fer-

rite and dielectric layers and a two permanent magnet bias system. The slot

was fed from a microstrip line centered in the slot which was centered in the

cavity as shown in Figure 54. The scattering parameters were measured with

an HP-8510 network analyzer and showed a magnetostatic wave resonance at

1.87 GHz. The power pattern of the CBS antenna was measured and agreed

with S- parameter measurements by showing a peak in the gain at about
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1.75GHz. It is expectedthat at 1.87GHz, the slot/microstrip configuration
is tightly coupledand no radiation shouldoccur. Slightly off that frequency
is where the radiation happenssince the feed match is still good, but the

slot/microstrip coupling is now weaker. A second peak in the gain was seen

at 800 MHz. This is a second lower frequency peak which is also a magneto-

static wave resonance. Unfortunately, it was only excited during the radiation

measurements. This second peak is near the frequency range desired. This

suggested that a different excitation was necessary to excite this mode. The

experiments before were focused on varying the slot/microstrip feed to better

understand the mechanism for resonance and to excite the lower frequency

magnetostatic wave mode. The results showed that only a magnetic surface

wave mode was excited. To excite magnetic volume wave mode, another feed

structure was designed and built (Figure 55). The feed structure in this case

was inside the cavity. This structure excited both surface and volume wave

modes strongly.

Before discussing the experiments performed, the reasoning for the present

feed configuration will be discussed. The desired low frequency volume wave

mode has as its main component a vertical magnetic field. It is this field

quantity that must be couple to the probe for a strong volume wave mode

excitation. Previously, the feeds have been isolated from the ferrite through

the slot. One possible way to couple to this magnetic field would be a vertical

magnetic dipole, but it is a fictitious device. An electric loop can excite a

vertical magnetic field. This loop must be located close the ferrite, in the

cavity, to avoid any modal distortion seen by coupling through the slot. The

other design parameter was to make this cavity a two-port device to deter-

mine the loss in the structure and the radiation efficiency. From these simple

conditions, the cavity was altered and the new feed configuration was built.

Two sets of experiments will be discussed here. The first set will consider

the new feed structure in the cavity with the slot short circuited (closed). The

purpose of these first experiments were to force a volume wave magnetostatic

mode to be excited. The second set of experiments were to determine how

efficient the magnetostatic wave modes couple to the antenna. Note that all

measurements were taken with an HP-8510 network analyzer over a frequency

range of 50 MHz to 2 GHz. Also, the DC bias field is y-directed, in the plane

of the homogeneous layers.
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1. Closed Cavity Experiments

The first experiment shown in Figure 56 is the scattering parameters of the

closed cavity configuration with a straight line feed across the cavity. The

dimensions of the slot and cavity are shown in Table 5. The probe is centered

in the third layer of the cavity. Similar to what was reported previously, a

magnetostatic surface wave mode is excited, but at a lower frequency, 1.61

GHz. This mode is shifted in frequency due to the removal of the slot from the

fixture. The second experiment shown in Figure 57 is same as the previous

experiment but with the straight line replaced by a bent one. A different

resonance mode was seen at approximately 1 GHz. This is a volume mode

resonance. In this figure, the surface wave mode resonance can also be seen at

1.93 GHz. To insure that the second resonance seen is a volume wave mode,

one of the permanent magnets was removed and replaced by a steel cube of

the same dimensions. If the mode is a volume wave mode, the resonance

should decrease in frequency and become higher Q due to the decrease of the

DC magnetic bias field. If the mode is a surface wave mode, the decrease in

the magnetic field should make the mode disappear, since the surface wave

mode is much more sensitive to changes in the DC magnetic bias field. Figure

58 shows this change in the bias field. As seen by examining Sxl, the dip

decreased to 815 MHz and became more narrow and deep. This confirmed

that the mode excited at 1 GHz and shifted to 815 MHz while decreasing

the bias field is a magnetostatic volume wave mode. This resonance is in

the UHF range and suggests a resonance in the VHF range is possible. Also,

if the total power is calculated at these frequencies using 1Sl112+ 1S2112, the

losses are extremely small, on the order of 1% or less.

2. Slot/Cavity Experiments

The second set of measurements examined are the ferrite-loaded cavity with

the slot open. Rather than show many results to determine loss, the S-

parameters of the two port, radiation efficiency and the match with different

loads on one port, only one plot will be shown and the results summarized.

This plot, Figure 59, shows the efficiency, Sn, of the cavity backed slot with

one probe shorted. Only one ferrite layer was in the cavity and it was biased

by one permanent magnet. The probe was bent and suspended between the

ferrite layer and the slot. At 1.29 GHz, the return loss is -2.45 dB; therefore,
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56% of the power enters the cavity. From the first set of experiments, it

was shown that the cavity is very low loss. This power must exit the cavity

through the slot since it has nowhere else to go. Many different configurations

were examined to be able to couple strongly to a volume wave mode in the

cavity, and to the slot. This second set of experiments could again couple

to the volume wave mode in the cavity, but could not couple strongly to the

slot. The volume wave mode seems trapped within the ferrite layer. The slot

needs to be changed in shape and/or position to couple more strongly to the

cavity mode.

3. Conclusions and Future Work

The results presented in this report have been two-fold: (1) theoretical echo

area and power handling capabilities of a three-dimensional CBS antenna

partially filled with ferrite and dielectric layers and (2) experimental results

showing the excitation of a magnetostatic surface and volume wave modes,

their tuning by a variable DC magnetic bias in the CBS structure, and ra-

diation efficiency. These results represent two significant steps in the design

and modelling of ferrite filled CBS antennas. This is the first time that the

theoretical calculation of the RCS from a ferrite and dielectric filled three

dimensional CBS antenna has been reported to the authors' knowledge. It

is important to discern this work from the contributions of many previous

investigators utilizing ferrite material in the design of an antenna. Most in-

vestigators assume that the ferrite material is isotropic with a permeability

that changes with the DC magnetic bias field, e.g. an effective permeability.

This assumption ignores the effect of the off-diagonal terms of the permeabil-

ity tensor to simplify the field equations. In this work, a full wave solution

is utilized, hence, the permeability tensor is included in the analysis.

Secondly, the magnetostatic volume wave mode was excited experimen-

tally and tuned by varying the DC magnetic bias of the ferrite. This is a

significant step in the design of a broadband, electrically small CBS antenna.

Both the theoretical and experimental resonances occurred in the desired

UHF range. The potential for exciting a VHF resonance with a different

design is feasible. Furthermore, the experimental results indicated that the

antenna was poorly matched. The many degrees of freedom in the CBS

antenna makes an empirical design over large bandwidths extremely time

consuming. For an accurate CAD model of the antenna, the input imped-
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ance of the probe in the cavity must be calculated. The input impedance
calculation is one of future goalsof this project.

During the next period (near term goals), additional experimental work
on modifications of the cavity and feed network will be performed. The
objective is to improve the input impedanceand coupling from the volume
wavemode to the slot. Also, somemorenovel waysto control the bias field
rather than just removing a magnet will be considered.

In addition, the finishing toucheswill be put on the theory necessaryto
include the feedand the programmingwill begin. Oncethe feed is addedto
the analysis,input impedanceand other usefulinformation canbeextracted.

The more long term goalsof this project shouldbe the inclusion of gain
in the analysis of the CBS antenna. More information on tuning the slot,
material losses,and radar cross section vs. magnetization and frequency
would be available for the entire structure of interest. An infinite array
analysiswould be useful to determine the coupling effects in a large array
environment. Also, the measurementof the RCSand gain of a CBS antenna
would be useful for comparisonwith theory.
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Layer Variable Meaning Physical Dimensions

a

b

C

l

W

Ho

cavity width

cavity length

cavity depth

lot length
slot width

DC magnetic bias field

£r

tl

relative permeai_ility

relative permittivity

thickness of the 1st layer

1.3 in

2.0 in

0.8 in

1.2 in

0.3 in

200 Oe

1.0

1.0

0.10 in

4

5

_r

£r

4_-Ms

AH

t2

_r

t3

_r

4_rMs

AH

t4

_r

_r

t5

relative permeability

relative permittivity

saturation magnetization

resonance line width

thickness of the 2nd layer

relative permeability

relative permittivity

thickness of the 3rd layer

relative permeability

relative permittivity

saturation magnetization
resonance line width

thickness of the 4th layer

relative permeability

relative permittivity

thickness of the 5th layer

1.0

13.9

800 Oe

10 Oe

0.25 in

1.0

10.5

0.02 in

1.0

1.0

800 Oe

10 Oe

0.25 in

1.0

2.2

0.08 in

Table 5: Rectangular Slot and Cavity Parameters.
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Figure 36: Geometry of a probe fed circular patch backed by a circular cavity.
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Figure 37: Input impedance versus frequency for circular cavity-backed cir-

cular patch on Smith chart (experimental and theoretical results) (er = 2.2).

72



U2

L/2

O

p____

,f'_/

10.00

0.00

-t0.00

" '30--40,

- 30.00

I

THEORETICAL
EXPER.

1

I

I

I

II

II

II

_d

I1'

t i

0.90 1.00 i 10

I P I I

".20 t.30 1.4.0 i.50 .6O

FREQUENCY (OHz)
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Figure 39: Schematic of an infinite array of probe fed circular microstrip

patches each backed by a circular cavity.

74



Re(Za(0,0)}

z_.(9,¢)

.ARRAY
ELEMENT

r(0,,) =
z_,(e,,) - Z_n(O,O)

zig(e,,) + z_.(o,o)

Figure 40: Broadside-matched active element reflection coefficient of the

cavity-backed patch antenna.
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Figure 41: E-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches (d=0.02 t0).
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Figure 42: H-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches (d=0.02 Ao).
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Figure 43: E-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches @=0.05 A0).
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Figure 44: H-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches (d=0.05)_0).
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Figure 45: E-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches (d=0.08 A0).
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Figure 46: H-plane broadside-matched reflection coefficient versus scan angle

for infinite arrays of circular and rectangular cavity-backed and conventional

patches (d=O.08 Ao).
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Figure 47: E-plane broadside-matched reflection coefficient versus scan angle

for and infinite array of circular cavity-backed circular patches as a function

of substrate thickness.
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cavity-backed circular patches as a function of substrate thickness.
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Figure 49: Geometry of a cavity-backed patch antenna that is suitable for
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Figure 50: Sketchof CBS antenna.
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antenna with varying H0.
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Figure 56: Sn and $2, of the ferrite and dielectric loaded closed cavity with

the straight line feed.
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Figure 57: Su and $21 of the ferrite and dielectric loaded closed cavity with
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